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Abstract- In this paper, we discuss the hierarchy
that is involved in a typical MEMS design and how
evolutionary approaches can be used to automate the
hierarchical design and synthesis process for MEMS. At
the system level, the approach combining bond graphs
and genetic programming can lead to satisfactory design
candidates of system level models that meet the
predefined behavioral specifications for designers to
tradeoff. At the physical layout synthesis level, the
selection of geometric parameters for component devices
is formulated as a constrained optimization problem and
addressed using a constrained GA approach. A multiple-
resonator microsystem design is used to illustrate the
integrated design automation idea wvsing evolutionary
approaches.

I. INTRODUCTION

Due to the complexity and intricacy involved in MEMS
design, designing MEMS still remains an art in most
applications, requiring a large amount of investment of
human resources, time and money. Much of the investment
is consumed in the iterative trial-and-error design process.
Automated design synthesis helps engineers to develop
rapid, optimal configurations for a given set of performance
and constraint guidelines, and thus to shorten typical
development cycles for MEMS (with a given fabrication
technology) by a large factor and to enable design of far
more complex MEMS than can be handled today.

Electronic Design Automation (EDA) has achieved great
success in both industry and academia. However, analogous
research in design automation for MEMS seems to lag far
behind, although considering the close affinity of MEMS
and VLSI — MEMS actually evolved from microelectronics
and inherited the fabrication techniques of VLSI - the
potential successful applications of design automation of
MEMS appear to be promising. It tums out that translating
the key insights of silicon evolution success into MEMS
technologies 1s a much more challenging task than most
people have expected. Major research topics to be addressed
include:
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1. developing a broad base of building blocks in MEMS
technologies so that huge networks of micro-devices
could be assembled into arbitrary architectures with
desirable functicnalities,

2. abstracting design hierarchies to stratify and conquer
design complexity, thus making the design more
amenable to an automated process,

3. improving models of computation and extending
current  synthesis methodologies to facilitate
generation of viable design candidates and smoother
transitions from conceptual and embodied designs to
process fabrication.

4. combining MEMS component layout extraction and
lumped-parameter bond graph simulation and design
synthesis to provide MEMS designers with VLSI-like
environments enabling faster design cycles and
improved design productivity.

This paper seeks to partially address the above
challenges, especially the first two. The proposed
hierarchical and evolutionary design framework for MEMS
aims to eliminate tedious and repetitive design tasks,
facilitate hierarchical problem decomposition, and combine
the power of multiple evolutionary computation algorithms
working simultanecusly to identify better product designs
and process solutions. In particular, we divide design
representations of MEMS design into two levels, the system-
level behavioral macromodel and the detailed-level physical
geometric layout model. At the system level, we use a
combination of genetic programming and bond graphs to
automatically generate and search for viable design
candidates represented by behavioral macromodels
satisfying high-level design specifications. At the second
detailed (layout) level, multiobjective constrained genetic
algorithms are used to optimize the geometric parameters
that relate the physical device model to the behavioral
macromedel and meet more detailed design objectives.

II. HIERARCHICAL MEMS DESIGN
METHODOLOGY

In MEMS, there are a number of levels of designs that
need to be synthesized [1]. Usually the design process starts
with basic capture of the schematic of the overall system,
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and then goes on through layout and construction of a 3-D
solid model. So the first design level is the system level,
which includes selection and configuration of a repertoire of
planar devices or subsystems. The second level is 2-D layout
of basic structures like beams to form the elementary planar
devices. In some cases, if the MEMS is basically a result of
a surface-micro machining process and no significant 3-D
features are present, design of this level will end one cycle
of design. More generally, modeling and analysis of a 3-D
solid model for MEMS is necessary. However, even if we
have obtained an optimized 3-D device shape, it is still very
difficult to produce a proper mask layout and correct
fabrication procedures. Automated mask layout and process
synthesis tools would be very helpful to relieve designers
from considering the fabrication details and focus on the
functional design of the device and system [2]. After a “top-
down” design path, a “bottern-up™ verification process is
usually followed to puaraniee that at each design level the
desipn specifications are met exactly as defined (Fig. 1). The
ultimate goal is to develop tools for MEMS design to ensure
first-pass success by having a well-defined “top-down”
design path and “bottom-up” verification path,

Top-down ‘ High-leve} objective description
design I

l System-level schematic specification ‘

]

l Component geometry specification I |
! |
I Three dimensional continuum specification

| J

Process and mask specifications Bottom-1p
Verification

Figure 1. Hierarchical Design Process of MEMS

III. SYSTEM-LEVEL SYNTHESIS OF MEMS USING
GENETIC PROGRAMMING AND BOND GRAPHS

For system-level design, hand calculation is still the most
popular method in current design practice. This is mainly
becanse no powerful and widely accepted synthesis
approach exists to automated design of multi-domain
systems. In addition, most MEMS system-level design is
accomplished by modeling entire microelectromechanical

system as single behavioral entities having no lower
hierarchical level in design. If there is anmy change in
geometric parameters or topolegy, a whole new model must
be created, and this substantially lengthens design cycles.
Over the past two decades, computational design algorithms
based on Darwin’s principles of evolution have developed
from academic curiosities into practical and effective tools
for scientists and engineers. Gero, for example, investigates
evolutionary systems as computational models of creative
design and studies the relationships among genetic
engineering, style emergence, and complex evolution [3].
Goodman et al. [4] studied evolution of engineering artifacts
using heterogeneous parallel genetic algorithms. Koza has
applied genetic programming to evolve analog filter circuits
and can optimize the topology and sizing parameters of the
evolved circuits simultaneously [5].

In this research, we use genetic programming as a strong
search 100l to explore the topologically open-ended design
space for system-level behavioral models of MEMS, We
also use bond graphs as a modeling tool to unify
representations of mixed energy domains of MEMS. We call
the overall approach the BG/GP approach.

A, Bond Graphs

The reason we used bond graphs in research on MEMS
synthesis is because MEMS are intrinsically multi-domain
systemns, unlike electronic systems. We need a uniform
representation of MEMS so that designers can not only shift
among different hierarchies of design abstractions but also
can move around design partitions with different physical
domains without difficulty. The bond graph is a modeling
tool that provides a unified approach to the modeling and
analysis of dynamic systems, especially hybrid multi-domain
systems including mechanical, electrical, pneumatic,
hydraulic components, etc. It is the explicit representation of
model topology that makes the bond graphs a good
candidate for use in open-ended design search. It is natural
to use bond graphs to represent a dynamic system, such as a .
mechatronic system, with cross-disciplinary physical
domains and even controller subsystems (Fig. 2). For
notation details and methods of system analysis related to
the bond graph representation, see [6].

Shah [7] identifies the importance of bond graphs for
unifying multi-level design of multi-domain systems. Tay
al. [8] use bond graphs and GA to generate and analyze
dynamic system designs automatically. This approach
adopts a variational design method, which means they make
a complete bond graph model first, and then change the
bond graph topologically using a GA, yielding new design
alternatives. However, the efficiency of this approach is
hampered by the weak ability of GA o search in both
topology and parameter spaces simultaneously. Terpenny
and Jiachuan Wang have begun tc explore combination of
bond graphs and evolutionary computation [9). Campell
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[10] also uses the idea of both bond graphs and genetic
algorithms in his A-Design framework. In this research, we
use an approach combining genetic programming and bond
graphs to automate the process of design of dynamic systems
to a significant degree.

B. Combining Bond Graphs and Genetic Programming

The most commeon form of genetic programming [5] uses
trees te represent the entities to be evolved. Defining of a
proper function set is one of the most significant steps in
using genetic programming. It may affect both the search
efficiency and validity of evolved results and is closely
related to the selection of building blocks for the system
being designed. By executing the genotype, a genetic
programming tree that composes of functions in the function
set as nodes of the tree, an arbitrary representative topology,
or phenotype can be generated in a developmental manner.
In this research, we have an additional dimension of
flexibility in generating phenotypes, because bond graphs
are used as modeling representations for multi-domain
systems, serving as an intermediate representation between
the mapping of genotype and phenotype, and can be
interpreted as systems in different physical domains, chosen
as appropriate to given circumstances. Figure 3 illustrates
the role of bond graphs in the mappings from genotypes to
phenotypes. (111
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Figure 2. Bond graphs representing a mechatronic system with mixed
energy domains and a controller subsystem
N { Phenotype }

{ Genotype } ‘ ‘
i |

Genetic Bond Physical
Graphs Realizatien
programming Models ot
— ot ==>| bynamic
Tree Dynamic Systams
Systems

Figure 3. Genotype-Phenotype mapping

C. Filter Topology

Automated synthesis of an RF MEM device, a micro-
mechanical bandpass filter, is used as an example in this
paper [12]. Through analyzing two popular topologies used
in surface micromachining of micro-mechanical filters, we
found that they are topologically composed of a series of
concatenated Resconator Units (RUs) and Bridging Units
{BUs) or RUs and Coupling Units (CUs). Figure 4 illustrates
the layouts and bond graph representations of one widely
accepted filter topologies [12]. Its corresponding bond graph
representations are also shown.

Figure 4. MEM filter topology

D. Function Set

In this research, a GP function set is presented and listed
in Table 1. Examples of cperaters, namely insert_CU and
insert_RU, are illustrated in Figures 5 and 6. Figure 5
explains how the insert_CU function works. A Coupling
Unit (CU) is a subsystem that is composed of a capacitor
attached with a O-junction in the center and two bonds
connecting 1-junctions at the left and right ends. After
execution of the insert_CU function, an additional
modifiable site (2) appears at the rightmost newly created
bond. As illustrated in Figure 6, a resonator unit (RU),
composed of one 1, R, and C component all attached to a 1-
junction, is inserted in an original bond with a modifiable
site through the insert_ RU function. After the insert_RU
function is executed, a new RU is created and one additional
medifiable site, namely bond (3), appears in the resulting
phenotype bond graph, along with the original modifiable
site bond (1). The newly-added i-junction also has an
additional modifiable site (2). As components C, I, and K all
have parameters to be evelved, the insert_RU function has
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three corresponding ERC-typed sites, (4), (5), and (6), for
numerical evolution of parameters.

Table 1. Operators in Medular Function Set

f MODULAR FUNCTION SET
! insert RU

Insert a Resonator Unit

5 Add aResonator Unit |
insert_JO1 Insert a 0-1-junction
insert_CI Insert a special CIR
insert_CR |  Insert a special CR

C7Add ] Add a junction compound

.

11_:_;~ux_—_:> T ¥
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Figure 5. Operator to Insert Bridging Unit

Figure 6. Operator to Insent Resonator Unit

E. Design Embryo

All individual genetic programming trees create bond
graphs from an embryo. Selection of the embryo is also an
important topic in system design, especially for multi-port
systems. In our filter design problems, we use the bond
graph shown in Figure 7 as our embryo.

1 Mechanical
! resona
force ":’ 078 Y farce

1 Coupling/ +——"|
1 Bridging
1 units.

voltage

currend : vollage
A

Comb drive
Comb drive

Figure 7. Design embryo of a MEM filter

F. Fitness Function

Within the frequency range of interest, frange= [fmin,
fmax], uniformly sample 100 points. Here, frange = [0.1,
1000K] Hz. Compare the magnitudes of the frequency
response at target magnitudes, which are 1.0 within the pass
frequency range of [316, 1000] Hz, and 0.0 otherwise,
between 0.1 and 1000KHz.

G. Experimental Setup

Three major code modules were created in this work. The
algorithm kemel of HFC-GP was a strongly typed version
[13] of an open software package developed in our rescarch
group -- lilgp. Parameters for lilgp are shown in the tableau
below.

Population size: 500 in each of thirteen
subpopulations

Initial population: half_and_half

Initial depth: 4-6

Max depth: 50 Max_nodes 3000

Selection: Tournament {size=7)

Crossover: 0.9 Mutation: 0.3

A bond graph class was implemented in C++. The fitness
evaluation package is C++ code converted from Matlab
code, with hand-coded functions used to interface with the
other modules of the project. The commercial software
package 20Sim was wused to verify the dynamic
characteristics of the evolved design. The GP program
obtains satisfactory results on a Pentium-IV 1GHz in
1000~1250 minutes.

H. Experimental Results

Experimental results show the strong topological search
capability of genetic programming and feasibility of our
BG/GP approach for finding realizable designs for micro-
mechanical filters [14].
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In Figure 8 and Figure 9, K is the number of resonator
units appearing in the best design of the generation on the
horizontal axis. As fitness improves, the number of
resonator units, K, grows — unsurprising because a higher-
order system with more resonator units has the potential of
better system performance than its low-order counterpart.
The plot of corresponding system frequency responses at
generations 27, 52, 117 and 183 are shown in Figure 8.

A layout of a design candidate with four resonators and
three coupling units as well as its bond graph representation
is shown below in Figure 10. Notice that the geometry of
resonators may not show the real sizes and shapes of a
physical resonator and the layout figure only serves as a
topological illustration.

Using the BG/GP approach, it is also possible to
explore novel topologies of MEM fiiter design. In this case,
we may not necessarily use a strictly realizable function set.
Instead, a semi-realizable function set may be used to relax
the topological constraints, with the purpose of finding new
topologies not realized before but still realizable after
careful design. Figure 11 gives an example of a novel
topology for a MEM filter design. An attempt to fabricate
this kind of topology is being carried out in a university
research setting.

1

10t 10t 1w 0’ 10 104
Frequency

Figure 8. Frequency responrses of a sampling of design candidates,
which evolved topologies with larger numbers, K, of resopators as the
evolution progressed. All results are from one genetic programming
run of the BG/GP approach.
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Figure 10. Layout and bond graph representation of a design candidate from
the experiment, with four resonator units coupled with three coupling units.
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Figure 11.A novel topology of MEM filter and its bend graph
representation

IV. SECOND-LEVEL PHYSICAL LAYOUT
SYNTHESIS

Layout synthesis automatically generates valid or
optimized geometric sizing parameters for cell componeats,
which in most cases are commonly used micromechanical
devices with fixed topologies, according to engineering
design objectives. In this research, the cell component is a
resonator device in MEMS domain. The design objectives
come from either high-level specifications such as
behavioral model parameters that need to be satisfied, or
from layout-level objectives such as minimum areas
occupied. Qur approach is to model the design problem as a
formal constrained optimization problem, and then solve it
with powerful optimization techniques, resulting in a tool
that automates the design synthesis of MEMS structures.
Two categories of optimization techniques are used: one
category includes stochastic algorithms such as geretic
algorithms, and the other category includes deterministic
algorithms such as nonlinear programming. For both
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categories, the process of solving the optimization problem
involves determining the design variables, the design
constraints, and the design objective.

We decided to use 14 design variables for an example
cell component, a folded-flexure comb-drive microresonator
fabricated in a polysilicon surface microstructural process
(Fig. 12) in this research. Design variabjes and their
constraints are listed as follows (Fig. 13) [15]:

2< L, <400, 2<w, <20,
2<L,<400,2<w, €20.2< L, <400,
10< w,, £400.10< w,, <400,

10< w,, $400,2< L, <700,8< L, <400,

2<w, €20, 2< L, <400, 4 < x, <400,
0<V <100

shuttle
Mass

folded
flexure
comb
drive anchor
puints

subsirate

(ky

Figure 12,A folded-flexure comb-drive microresonator fabricated in a
polysilicon surface microstructural process a) Layout b) Cross-section A-A’

Figure 11. Major design variables for microresonators

It is noted that the first 13 design variables have units of
Lim . The fourteenth design variable has units of volts.

In addition, we assume { = w, = g = d in our design
for simplicity. Some design variables are predefined: they
are wy, =11, w,, =14, 6 =4, N =10.

There are also a number of design constraints for the
microresonator cell component, including both geometric
constraints and functional constraints. In this paper, without
loss of generality, we consider the following constraints:

0L, +2g+2w <700
0L, +2L,+2w, £700
0<3L +wy, +4L, - 2x, + 2w, + 2w, <700
4< L —(x; +xy,) <200

Among them, the first three are linear constraints, and the
fourth is a nonlinear constraint because the term xd!.sp is

highly Xy = OF, /K, .
F, =112e,N+V?,

Suppose that in the system-level synthesis, we get a set of
behavioral parameters for the cell component of a
microresonator as

nonlinear. where

K,=02IN/m
Bx =5.18¢ - 6kg - m*
m, =4.0e~6kg

Then we have three additional equation constraints.
Equations to relate the design variables and the three
behavioral model parameters are as follows:

_2EW,’ L +14aL L, +360°L,’

Kx 3 2 2
AL +4Mlal L, +36a°L,

where
L,

a=W,Iw,)’
B, = fl(A, +0.54, +0.54,)(4 +1)+ 2]
4

m,=m, ++m, +Lm,

where m = pA , m, = pA, 6 m, = pA,
A =w,L_ + 2wsy LJ},

A =2w_L

ca™cy?
A, =8L,w, +2w, 2L, +w, +2w,)
As an alternative, we can also put reformulations of these
three constraint equations into our design objectives,
expressing them as differences to be minimized. In that case,

we actually deal with a multi-objective constrained
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optimization problem. We take the objective function with
the following normalized Sum of Squared Error (SSE)
format:

F=i (K, ~02" + b (B 518 Y + o (M, — 40 Y

Finally, it is important to note the role of feature size in
VLSI and MEMS design. Feature size, which is often
represented as A, means the minimum size a particular
design can achieve, based on specific fabrication
procedures. In addition, the actual sizes of geometric shapes
should be integer multiples of the feature size A, such as
A, 24 ,5A4,10A4 ... etc. In this research, we set A=009
fm. While it is very difficult for many numerical
optimization approaches (for example, gradient-based
approaches) to include considerations of feature size
constraints [15], it is quite convenient for genetic algorithms
to do so. We need to modify the objective function only
slightly, mapping real values of design variables to integer
multiples of the feature size A before using them in
formulations of constraints and objectives. No modifications
to the genetic algorithm are needed.

A. Solving the optimization problem using GA

In trying to solve constrained optimization problems using
genetic algorithms or classical deterministic optimization
methods, penalty function methods have been the most
popular approach, because of their simplicity and ease of
implementation. In this paper, we use a special constrained
GA that exploits pair-wise comparisons in a tounament
selection operator to devise a penalty function approach that
does not require any penalty parameter. Careful comparisons
among feasible and infeasible solutions are made so as to
provide a search direction towards the feasible region. Once
sufficient feasible sclutions are found, a niching method
(along with a controlled mutation operator) is used to
maintain diversity among feasible solutions. This allows a
real-parameter GA’s crossover operator to continuously find
better feasible solutions, gradually leading the search nearer
to the true optimum solution [16].

The parameters for setting the constrained GA are as
follows:
Variable Boundaries: Rigid
Total no. of generations : 100
Mutation prob, (real): 0.0500
Exponent {n for SBX): 10.00
Exponent (n for mutation): 10.00

Population size: 900
Crossover prob.: 0.90
Niching param.: 0.90

In ten runs of the genetic algorithm using different
random seeds, we obtained the sizing parameters and values
of the objective function (to be minimized) listed in Table
5.3. It can be seen that during the ten GA runs using
different seeds, the GA performs very steadily. Almost all
runs achieved objective values, namely, the Normalized
Squared Sum of Errors (NSSE), within the range of 1.0e-6.

The mean value of NSSE is 3.4e-6, while the standard
deviaton of NNSE is 3.8644e-6. The biggest NSSE is 1. 4e-
5. However, the normalized squared sum of errors of 1.4e-5
is still considered very good result. It also appears that there
are many alternative and rather different ways in which
parameters can be set and still produce behavior rather close
to that desired. : '

Table 2. Layout parameters obtained in ten GA runs (with different randora
seeds) .
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V. SUMMARY

This paper has suggested a design methodology for
automatically synthesizing hierarchical designs for MEMS.
While there has been much research using evolutionary
computation techniques to synthesize MEMS [2][17], this is
the first work reported to seek to automate the hierarchical
MEMS synthesis process in an integrated framework. Our
first step is to synthesize system-level behavioral models
using a combination of genetic programming and bond
graphs. Then as the second step, we use a constrained
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genetic algorithm to automatically optimize the geometric
sizing parameters for the cell components. An example of
MEM filter design with coupling of multiple
microresonators is used to illustrate the approach. Extension
of this work can lead to a composable design and synthesis
environment for micromechatronic systems [18]. In addition,
target cascading in optimal system design needs to be
investigated in depth to propagate the desirable top-level
design specifications to appropriate specifications for the
various subsystems and components in a consistent and
efficient manner [19][20). More work is underway to
improve the efficiency of genetic programming to explore
topologically open-ended design spaces, and the robustness
of the constrained genetic algorithm to solve real-world
constrained optimization problems.
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