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Abstract- In this paper, we discuss the hierarchy 
that is involved in a typical MEMS design and how 
evolutionary approaches can he used to automate the 
hierarchical design and synthesis process for MEMS. At 
the system level, the approach combining bond graphs 
and genetic programming can lead to satisfactory design 
candidates of system level models that meet the 
predefined behavioral specifications for designers to 
tradeoff. At the physical layout synthesis level, the 
selection of geometric parameters for component devices 
is formulated as a constrained optimization problem and 
addressed using a constrained GA approach. A multiple- 
resonator microsystem design is used to illustrate the 
integrated design automation idea using evolutionary 
approaches. 

I. INTRODUCTION 

Due to the complexity and intricacy involved in MEMS 
design, designing MEMS still remains an art in most 
applications, requiring a large amount of investment of 
human resources, time and money. Much of the investment 
is consumed in the iterative trial-and-error design process. 
Automated design synthesis helps engineers to develop 
rapid, optimal configurations for a given set of performance 
and constraint guidelines, and thus to shorten typical 
development cycles for MEMS (with a given fabrication 
technology) by a large factor and to enable design of far 
more complex MEMS than can be handled today. 

Electronic Design Automation (EDA) has achieved great 
success in both industry and academia. However, analogous 
research in design automation for MEMS seems to lag far 
behind, although considering the close affinity of MEMS 
and VLSI - MEMS actually evolved from microelectronics 
and inherited the fabrication techniques of VLSI - the 
potential successful applications of design automation of 
MEMS appear lo he promising. It tums out that translating 
the key insights of silicon evolution success into MEMS 
technologies is a much more challenging task than most 
people have expected. Major research topics to be  addressed 
include: 
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1. developing a broad base of building blocks in MEMS 
technologies so that huge networks of micro-devicas 
could be assembled into arbitrary architectures with 
desirable functionalities, 
abstracting design hierarchies to stratify and conquer 
design complexity, thus making the design more 
amenable to an automated process, 

3. improving models of computation and extending 
current synthesis methodologies to facilitate 
generation of viable design candidates and smoother 
transitions from conceptual and embodied designs to 
process fabrication.' 
combining MEMS component layout extraction and 
lumped-parameter bond graph simulation and design 
synthesis to provide MEMS designers with VLSI-like 
environments enabling faster design cycles and 
improved design productivity. 

2. 

4. 

This paper seeks to partially address the above 
challenges, espccially the first two. The proposed 
hierarchical and evolutionary design framework for MEMS 
aims to eliminate tedious and repetitive design tasks, 
facilitate hierarchical problem decomposition, and combine 
the power of multiple evolutionary computation algorithms 
working simultaneously to identify better product designs 
and process solutions. In particular, we divide design 
representations of MEMS design into two levels, the system- 
level behavioral macromodel and the detailed-level physical 
geometric layout model. At the system level, we use a 
combination of genetic programming and bond graphs to 
automatically generate and search for viable design 
candidates represented by behavioral macromodels 
satisfying high-level design specifications. At the second 
detailed (layout) level, multiobjective constrained genetic 
algorithms are used to optimize the geometric parameters 
that relate the physical device model to the behavioral 
macromodel and meet more detailed design objectives. 

11. HIERARCHICAL MEMS DESIGN 
METHODOLOGY 

In MEMS, there are a number of levels of designs that 
need to be synthesized [l]. Usually the design process starts 
with basic capture of the schematic of the overall sys tm,  
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and then goes on through layout and construction of a 3-D 
solid model. So the first design level is the system level, 
which includes selection and configuration of a repertoire of 
planar devices or subsystems. The second level is 2-D layout 
of basic structures like beams to form the elementary planar 
devices. In some cases, if the MEMS is basically a result of 
a surface-micro machining process and no significant 3-D 
features are present, design of this level will end one cycle 
of design. More generally, modeling and analysis of a 3-D 
solid model for MEMS is necessary. However, even if we 
have obtained an optimized 3-D device shape, it is still very 
difficult to produce a proper mask layout and correct 
fabrication procedures. Automated mask layout and process 
synthesis tools would be very helpful to relieve designers 
from considering the fabrication details and focus on the 
functional design of the device and system [2]. After a “top- 
down” design path, a “bottom-up” verification process is 
usually followed to guarantee that at each design level the 
design specifications are met exactly as defined (Fig. 1 ) .  The 
ultimate goal is to develop tools for MEMS design to ensure 
first-pass success by having a well-defined “top-down’’ 
design path and “bottom-up’’ verification path. 

Topdown 1 Hih-level objective description 
design 

Syslem-level schematic specilicaljon 

1 Processand maskspecincaUons I Erzn 
Figure 1 Hierarchical Design Process of MEMS 

111. SYSI’E!M-I.EVEL SYSTHESIS OF ME31IS USING 
GENETIC PKOGRA.\lhllNG ASD BOND GRAPHS 

For s)sieni-le\,cl design, hand caliiilxtion I\ si111 the nwst 
popular nicthd in current dcsign practice. ‘lhi, ib mainl) 
because nu powerful and uidel) accepted \!ntheri. 
approdch exists to ;lutomateJ dcsign of multidomain 
spicms I n  i~ddiiion. niud MEhlS s)htcni-lcvcl dc3ign is 
accuiiiplishcd hy modcling rntire iiii~roeIc.~tr,)mcchanical 

system as single behavioral entities having no Lower 
hierarchical level in design. If there is any change in 
geometric parameters or topology, a whole new model must 
be created, and this substantially lengthens design cycles. 
Over the past two decades, computational design algorithms 
based on Darwin’s principles of evolution have developed 
from academic curiosities into practical and effective tools 
for scientists and engineers. Gero, for example, investigates 
evolutionary systems as computational models of creative 
design and studies the relationships among genetic 
engineering, style emergence, and complex evolution [3]. 
Goodman et al. [4] studied evolution of engineering artifacts 
using heterogeneous parallel genetic algorithms. Koza has 
applied genetic programming to evolve analog filter circuits 
and can optimize the topology and sizing parameters of the 
evolved circuits simultaneously [5] .  

In this research, we use genetic programming as a strong 
search tool to explore the topologically open-ended design 
space for system-level behavioral models of MEMS. We 
also use hond graphs as a modeling tool to unify 
representations of mixed energy domains of MEMS. We call 
the overall approach the BG/GP approach. 

A. Bond Graphs 
The reason we used bond graphs in research on MEMS 
synthesis is because MEMS are intrinsically multi-domain 
systems, unlike electronic systems. We need a uniform 
representation of MEMS so that designers can not only shift 
among different hierarchies of design abstractions but also 
can move around design partitions with different physical 
domains without difficulty. The bond graph is a modeling 
tool that provides a unified approach to the modeling and 
analysis of dynamic systems, especially hybrid multi-domain 
systems including mechanical, electrical, pneumatic, 
hydraulic components, etc. It is the explicit representation of 
model topology that makes the bond graphs a good 
candidate for use in open-ended design search. It is natural 
to use bond graphs to represent a dynamic system, such as a 
mechatronic system, with cross-disciplinq physical 
domains and even controller subsystems (Fig. 2). For 
notation details and methods of system analysis related to 
the bond graph representation, see [6]. 

Shah [7] identifies the importance of bond graphs for 
unifying multi-level design of multi-domain systems. Tay 
al. [SI use bond graphs and GA to generate and analyze 
dynamic system designs automatically. This approach 
adopts a variational design method, which means they make 
a complete bond graph model first, and then change the 
bond graph topologically using a GA, yielding new design 
alternatives. However, the efficiency of this approach is 
hampered by the weak ability of GA to search in both 
topology and parameter spaces simultaneously. Terpenny 
and Jiachuan Wang have begun to explore combination of 
hand graphs and evolutionary computation 191. Campell 
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[IO] also uses the idea of both bond graphs and genetic 
algorithms in his A-Design framework. In this research, we 
use an approach combining genetic programming and bond 
graphs to automate the process of design of dynamic systems 
to a significant degree. 

B. Combining Bond Graphs and Genetic Programming 
The most common form of genetic programming [51 uses 

trees to represent the entities to be evolved. Defining of a 
proper function set is one of the most significant steps in 
using genetic programming. It may affect both the search 
efficiency and validity of evolved results and is closely 
related to the selection of building blocks for the system 
being designed. By executing the genotype, a genetic 
programming tree that composes of functions in the function 
set as nodes of the tree, an arbitrary representative topology, 
or phenotype can be generated in a developmental manner. 
In this research, we have an additional dimension of 
flexibility in generating phenotypes, because bond graphs 
are used as modeling representations for multi-domain 
systems, serving as an intermediate representation between 
the mapping of genotype and phenotype, and can be 
interpreted as systems in different physical domains, chosen 
as appropriate to given circumstances. Figure 3 illustrates 
the role of bond graphs in the mappings from genotypes to 
DhenotvDeS. I I  11 

Figure 2. Bond graphs representing a mechatronic system with mixed 
energy domains and a controller subsystem 
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Figure 3 .  Genotype-Phenotype mapping 

C. Filter Topology 
Automated synthesis of an RF MEM device, a micrci- 

mechanical bandpass filter, is used as an example in this 
paper [12]. Through analyzing two popular topologies used 
in surface micromachining of micro-mechanical filters, u’e 
found that they ai-e topologically composed of a series of 
concatenated Resonator Units (RUs) and Bridging Units 
(BUS) or RUs and Coupling Units (CUs). Figure 4 illustrates 
the layouts and bond graph representations of one widely 
accepted filter topologies [ 121. Its corresponding bond graph 
representations are also shown. 

. .  

. .  

. . .  & 1-+ ’ 0- - 1  

Rgure4.MEM filter topology 

D. Function Set 
In this research, a GP function set is presented and listed 

in Table 1. Examples of operators, namely insert-CU and 
insert-RU, are illustrated in Figures 5 and 6. Figure 5 
explains how the insert-CU function works. A Coupling 
Unit (CU) is a subsystem that is composed of a capacitor 
attached with a 0-junction in the center and two bonds 
connecting I-junctions at the left and right ends. ARer 
execution of the insert-CU function, an additional 
modifiable site (2) appears at the rightmost newly created 
bond. As illustrated in Figure 6, a resonator unit (RU), 
composed of one I, R, and C component all attached to a 1- 
junction, is inserted in an original bond with a modifiable 
site through the insert-RU function. After the insert-RU 
function is executed, a new RU is created and one additional 
modifiable site, namely bond (3). appears in the resulting 
phenotype bond graph, along with the original modifiable 
site bond ( I ) .  The newly-added 1-junction also has an 
additional modifiable site (2). As components C, I, and R all 
have parameters to be evolved, the insen-RU function has 
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three corresponding ERC-typed sites, (4), (5).  and (6), for 
numerical evolution of parameters. 

Table 1. Operators in Modular Function Set 

MODULAR FlJNCIlON SET I 

, Add J 1 Addajunctioncompoung _I_._- 

P 

1 

Figun 5. Operator to Insert Bndging Unit 

D 

Figure 6. Operator to lnsen Resonator Unit 

E. Design Embryo 
All individual genetic programming trees create bond 

graphs from an embryo. Selection of the embryo is also an 
important topic in system design, especially for multi-port 
systems. In our filter design problems, we use the bond 
graph shown in Figure I as our embryo. 

I ........... 

Figure 1. Design embryo of a MEM filter 

F. Fitness Function 
Within the frequency range of interest, frange= [fmin, 

fmax], uniformly sample 100 points. Here, frange = [0.1, 
IOOOK] Hz. Compare the magnitudes of the frequency 
response at target magnitudes, which are 1.0 within the pass 
frequency range of [316, 10001 Hz, and 0.0 otherwise, 
between 0.1 and 1OOOKHz. 

G. Experimental Setup 
Three major code modules were created in this work. The 

algorithm kemel of HFC-GP was a strongly typed version 
[131 of an open software package developed in our research 
group -- lilgp. Parameters for lilgp are shown in the tableau 
below. 

Population size: 500 in each of thirteen 

Initial population: half-and-half 
Initial depth: 4-6 
Maxdepth: 50 Max-nodes 5000 
Selection: Tournament (size=7) 
Crossover: 0.9 Mutation: 0.3 

subpopulations 

A bond graph class was implemented in C++. The fitness 
evaluation package is C++ code converted from Matlab 
code, with hand-coded functions used to interface with the 
other modules of the project. The commercial software 
package 20Sim was used to verify the dynamic 
characteristics of the evolved design. The GP program 
obtains satisfactory results on a Pentium-IV lGHz in 
1000-1250 minutes. 

H. Experimental Results 
Experimental results show the strong topological search 

capability of genetic programming and feasibility of our 
BG/GP approach for finding realizable designs for micro- 
mechanical filters [ 141. 
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In Figure 8 and Figure 9, K is the number of resonator 
units appearing in the best design of the generation on the 
horizontal axis. As fitness improves, the number of 
resonator units, K, grows - unsurprising because a higher- 
order system with more resonator units has the potential of 
better system performance than its low-order counterpart. 
The plot of corresponding system frequency responses at 
generations 27,52, I17 and 183 are shown in Figure 8. 

A layout of a design candidate with four resonators and 
three coupling units as well as its bond graph representation 
is shown below in Figure IO. Notice that the geometry of 
resonators may not show the real sizes and shapes of a 
physical resonator and the layout figure only serves as a 
topological illustration. 

Using the BG/GP approach, it is also possible to 
explore novel topologies of MEM filter design. In this case, 
we may not necessarily use a strictly realizable function set. 
Instead, a semi-realizable function set may be used to relax 
the topological constraints, with the purpose of finding new 
topologies not realized before but still realizable after 
careful design. Figure 11 gives an example of a novel 
topology for a MEM filter design. An attempt to fabricate 
this kind of topology is being carried out in a university 
research setting. 

'O' t 

IC' 10. 30. ID. 10. 10' 

Freauency 

Figure 8. Frequency responses of a sampling of design candidates, 
which evolved topologies with larger numbers, K, of resonators as the 
evolution progressed. All results are from one genetic programming 
run of the BG/GP approach. 
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Figure 9. Fitness Improvement Curve 

Figure 10. Layout and band graph representation of a design candidate from 
the experiment. with four resonator units coupled with three coupling units. 

- f  

Figure 11 .A navel topology of MEM filler and its bond graph 
representation 

IV. SECOND-LEVEL PHYSICAL LAYOUT 
SYNTHESIS 

Layout synthesis automatically generates valid or 
optimized geometric sizing parameters for cell components, 
which in most cases are commonly used micromechanical 
devices with fixed topologies, according to engineering 
design objectives. In this research, the cell component is a 
resonator device, in MEMS domain. The design objectives 
come from either high-level specifications such as 
behavioral model parameters that need to be satisfied, or 
from layout-level objectives such as minimum areas 
occupied. Our approach is to model the design problem as a 
formal constrained optimization problem, and then solve it 
with powerful optimization techniques, resulting in a tool 
that automates the design synthesis of MEMS structures. 
Two categories of optimization techniques are used: one 
category includes stochastic algorithms such as genetic 
algorithms, and the other category includes deterministic 
algorithms such as nonlinear programming. For both 
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categories, the process of solving the optimization problem 
involves determining the design variables, the design 
constraints, and the design objective. 

We decided to use 14 design variables for an example 
cell component, a folded-flexure comb-drive microresonator 
fabricated in a polysilicon surface microstructural process 
(Fig. 12) in this research. Design variables and their 
constraints are listed as follows (Fig. 13) [151: 

2 I Lb S 400, 2 I w, I 20, 
2 < L ,  I 4 0 0 , 2 < w ,  < 2 0 . 2 S L s ~ I 4 O 0 ,  
10Iw, ,1400.105w,  5 4 0 0 ,  
I O  I wcy I 400,2 5 L, I 700.8 I L, 5 400. 
2 I w, 5 20, 2 I L, < 400.4  2 no 5400.  
0 I v 5 100. 

? I  

Figure 12.A folded-flexure comb-drive microresonator fabricated in a 
polysilicon surface miCrOslmCtUral process a) Layout b) Cross-section A 

I 

.-A 

It is noted that the first 13 design variables have units of 
/MI. The fourteenth design variable has units of volts. 

In addition, we assume t = w, = g = d in our design 

for simplicity. Some design variables are predefined: they 

are w,,=Il ,  w , , = 1 4 , 6 = 4 . N = 1 0 .  
There are also a number of design constraints for the 

microresonator cell component, including both geometric 
constraints and functional constraints. In this paper, without 
loss of generality, we consider the following constraints: 

01 LCY +2g  +2w, 5 700 

0 5 L, + 2Lb + 2w, I700 
0 S 3L, + wSy + 4Lc - 2x, + 2wCy + 2w, 5 700 
4 5 L, - (xo  + XdiSP) I 200 

Among them, the first three are linear constraints, and the 
fourth is a nonlinear constraint because the term xdisp is 

highly nonlinear. xdiSp = QF,,, 1 K, , where 

Fe,x =1.12~,,N:V~, 
Suppose that in the system-level synthesis, we get a set of 

behavioral parameters for the cell component of a 
microresonator as 
K, =0.27Nlm 

Bx = 5.18e-6kg , m 2  
m, = 4.0e - 6kg 
Then we have three additional equation constraints. 

Equations to relate the design variables and the three 
behavioral model parameters are as follows: 

2EtWb3 L,’ +14aL,L, +36a2Lb2 
K x  = where 

Lb3 4L,2 +4laL,L, +36a2L, 

1 
a = (W, IW,)’ 

B,  = / i [ (A ,  +0.5A, +0.5Ab)($+$)+--] 4 
g 

m, =m,? ++m, +ginb 
where m, = PA,, m, = PA,,  m, = PA, 

A, = W,*L, + *w,L,ry 
i 

A, = 2w,,L,, 
A, =8L,wb+2w,(2L,+w,+2wb) 

As an alternative, we can also put reformulations of these 
Figure 1 1 .  Major design variables far miaoresonatois three constraint equations into our design objectives, 

expressing them as differences to be minimized. In that case, 
we actually deal with a multi-objective constrained 
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optimization problem. We take the objective function with 
the following normalized Sum of Squared Error (SSE) 
format: 

+ 
f ( ~ ) = ~ ( ~ , - a 2 A Z ~ ( B . - 5 . 1 ~ ~ ) * ~ ( ~ ~ - 4 . ~ ~ ) *  

Finally, it is important to note the role of feature size in 
VLSI and MEMS design. Feature size, which is often 
represented as 2, means the minimum size a particular 
design can achieve, based on specific fabrication 
procedures. In addition, the actual sizes of geometric shapes 
should be integer multiples of the feature size 1, such as 
1 , 2 , 5 1 , 10 1 , , . etc. In this research, we set 1 = 0.09 
p n .  While it is very difficult for many numerical 
optimization approaches (for example, gradient-based 
approaches) to include considerations of feature size 
constraints [15], it is quite convenient for genetic algorithms 
to do so. We need to modify the objective function only 
slightly, mapping real values of design variables to integer 
multiples of the feature size 1 before using them in 
formulations of constraints and objectives. No modifications 
to the genetic algorithm are needed. 

A. Solving the optimization problem using CA 
In trying to solve constrained optimization problems using 

genetic algorithms or classical deterministic optimization 
methods, penalty function methods have been the most 
popular approach, because of their simplicity and ease of 
implementation. In this paper, we use a special constrained 
GA that exploits pair-wise comparisons in a toumament 
selection operator to devise a penalty function approach that 
does not require any penalty parameter. Careful comparisons 
among feasible and infeasible solutions are made so as to 
provide a search direction towards the feasible region. Once 
sufficient feasible solutions are found, a niching method 
(along with a controlled mutation operator) is used to 
maintain diversity among feasible solutions. This allows a 
real-parameter GA's crossover operator to continuously find 
better feasible solutions, gradually leading the search nearer 
to the true optimum solution [16]. 

The parameters for setting the constrained GA are as 

The mean value of NSSE is 3.4e-6, while the standal-d 
deviation of NNSE is 3.8644e-6. The biggest NSSE is 1 . 4 ~ -  
5. However, the normalized squared sum of errors of 1.4e-5 
is still considered very good result. It also appears that there 
are many alternative and rather different ways in  which 
parameters can be set and still produce behavior rather close 
to that desired. 

Table 2. Layout parameters oblained in ten GA NOS (with differerit random 
seeds) 

Variable Boundaries: Rigid Population size: 9 0 0  
Total no. of generations : 100 Crossover prob.: 0.90 
Mutation prob. (real): 0.0500 Niching param.: 0.90 
Exponent (n for SBX): 10.00 
Exponent (n for mutation): 10.00 

In ten runs of the genetic algorithm using different 
random seeds, we obtained the sizing parameters and values 
of the objective function (to be minimized) listed in Table 
5.3. It can be seen that during the ten GA runs using 
different seeds, the GA performs very steadily. Almost all 
runs achieved objective values, namely, the Normalized 
Squared Sum of Errors (NSSE), within the range of 1.0e-6. 

V. SUMMARY 
This paper has suggested a design methodology for 

automatically synthesizing hierarchical designs for MEMS. 
While there has been much research using evolutionary 
computation techniques to synthesize MEMS [2][17], this is 
the first work reported to seek to automate the hierarchical 
MEMS synthesis process in an integrated framework. Our 
first step is to synthesize system-level behavioral models 
using a combination of genetic programming and bond 
graphs. Then as the second step, we use a constrained 
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genetic algorithm to automatically optimize the geometric 
sizing parameters for the cell components. An example of 
MEM filter design with coupling of multiple 
microresonators is used to illustrate the approach. Extension 
of this work can lead to a composable design and synthesis 
environment for micromechatronic systems [181. In addition, 
target cascading in optimal system design needs to be 
investigated in depth to propagate the desirable top-level 
design specifications to appropriate specifications for the 
various subsystem and components in a consistent and 
efficient manner [19][20]. More work is underway to 
improve the efficiency of genetic piogramming to explore 
topologically open-ended design spaces, and the robustness 
of the constrained genetic algorithm to solve real-world 
constrained optimization problems. 
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